Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms.
نویسندگان
چکیده
The aim of this study was to evaluate corticospinal excitability of both hemispheres during the reaction time (RT) using transcranial magnetic stimulation (TMS). Nine right-handed subjects performed right and left thumb extensions in simple (SRT), choice (CRT) and go/no-go auditory RT paradigms. TMS, inducing motor-evoked potentials (MEPs) simultaneously in the extensor pollicis brevis muscles bilaterally, was applied at different latencies from the tone. For all paradigms, MEP amplitudes on the side of movement increased progressively in the 80-120 ms before EMG onset, while the resting side showed inhibition. The inhibition was significantly more pronounced for right than for left thumb movements. For the left SRT, significant facilitation occurred on the right after EMG onset. Initial bilateral facilitation occurred in SRT trials with slow RT. After no-go tones, bilateral inhibition occurred at a time corresponding to the mean RT to go tones. The timing of the corticospinal rise in excitability on the side of movement was independent of task difficulty and RT. This suggests that corticospinal activation is, to some extent, in series and not in parallel with stimulus processing and response selection. Corticospinal inhibition on the side not to be moved implies that suppression of movement is an active process. This inhibition is more efficient for right- than for left-side movements in right-handed subjects, possibly because of left hemispheric dominance for movement.
منابع مشابه
Non-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملExpectancy Induces Dynamic Modulation of Corticospinal Excitability
Behavioral studies using motor preparation paradigms have revealed that increased expectancy of a response signal shortens reaction times (RTs). Neurophysiological data suggest that in such paradigms, not only RT but also neuronal activity in the motor structures involved is modulated by expectancy of behaviorally relevant events. Here, we directly tested whether expectancy of a response signal...
متن کاملResponse competition in the primary motor cortex : 1 Corticospinal excitability reflects response replacement during simple decisions
25 26 It has been suggested that during decisions about actions, multiple options are initially 27 specified in parallel and then gradually eliminated in a competition for overt execution. To 28 further test this hypothesis, we studied the modulation of human corticospinal excitability 29 during the reaction time of the Eriksen flanker task. In the task, subjects responded with 30 finger flexio...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past 20 years, non-invasive brain stimulation has become an emerging field in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. Whereas transcranial magnetic stimulation has been used extensively since more than two decades ago as a potential "neuromodulator", transcranial current stimulation (tCS) has more ...
متن کاملThe Time Course of Corticospinal Excitability during a Simple Reaction Time Task
The production of movement in a simple reaction time task can be separated into two time periods: the foreperiod, which is thought to include preparatory processes, and the reaction time interval, which includes initiation processes. To better understand these processes, transcranial magnetic stimulation has been used to probe corticospinal excitability at various time points during response pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 123 ( Pt 6) شماره
صفحات -
تاریخ انتشار 2000